
Formosa Retreat Juli 2023
2023-07-11

Rosenpass

Wanja Zaeske, Stephan Ajuvo, Marei Peischl,
Benjamin Lipp, Lisa Schmidt, Karolin Varner

h t t p s : / / r o s e n p a s s . eu

https://rosenpass.eu


Hello, I am Karolin Varner

• Worked with about every industry tech; incl. Java Web Apps, Microcontrollers,
and legacy database system from the 80s

• Did a lot of project management and some people management
• Did a lot of open-source development, privacy- and internet politics activism
• Planning to get involved in the Formosa space

1/11



Rosenpass

WireGuard

! Session-key secrecy
! …
! Identity Hiding
% Non-Interruptability 1

% Post-Quantum Security

PQ WireGuard 2

! Post-Quantum Security
% Hybrid security
% Non-Interruptability 3

Rosenpass

! Non-Interruptability 4

! Hybrid security 5

1 Assuming a trusted system time
2 Hülsing, Ning, Schwabe, Weber, Zimmermann. “Post-quantum WireGuard”. https://ia.cr/2020/379
3 Assuming a PSK
4 Through cookies
5 Used together with standard WireGuard

2/11



Rosenpass

Alice Bob

Handshake

Handshake

Handshake

Handshake

WireGuard

Alice Bob

Handshake

Handshake

Handshake

Handshake

Handshake

PSK

PSK

PSK

!

! Kaputter Schlüssel

3/11



Rosenpass can be used right now

4/11



ProVerif in Technicolor

5/11



Having worked in industry has some advantages

• Knowing how to get projects done
• Coordinating teams instead of working on my own
• Product and user focused perspective
• Building tools that I can use to be more productive
• Open-Source approach: How to catch new contributors

6/11



The spec makes it easy to implement Rosenpass

Responder Code CommentsInitiator Code

←Action

←Action

←Action

←Action

←Action

←Action

Variables

Variables

Variables

Variables

Variables

Variables

Comment

Comment

Comment

Line

Line

Line

Line

Line

Line

ck

ck

← lhash("chaining key init", spkr)

sidi ← random_session_id();

eski, epki ← EKEM::keygen();

mix(sidi, epki);

sctr ← encaps_and_mix<SKEM>(spkr);

pidiC ← encrypt_and_mix(pidi);

mix(spki, psk);

auth ← encrypt_and_mix(empty())

ck ← lhash("chaining key init", spkr)

mix(sidi, epki)

decaps_and_mix<SKEM>(sskr, spkr, ct1)

spki, psk ← lookup_peer(decrypt_and_mix(pidiC))

mix(spki, psk);

decrypt_and_mix(auth)

Initialize the chaining key, and bind to the responder’s public key.

The session ID is used to associate packets with the handshake state.

Generate fresh ephemeral keys, for forward secrecy.
InitHello includes sidi and epki as part of the protocol transcript, and so we
mix them into the chaining key to prevent tampering.
Key encapsulation using the responder’s public key. Mixes public key, shared
secret, and ciphertext into the chaining key, and authenticates the responder.

Tell the responder who the initiator is by transmitting the peer ID.
Ensure the responder has the correct view on spki. Mix in the PSK as optional
static symmetric key, with epki and spkr serving as nonces.
Add a message authentication code to ensure both participants agree on the
session state and protocol transcript at this point.

Responder generates a session ID.
Initiator looks up their session state using the session ID they generated.
Mix both session IDs as part of the protocol transcript.

Key encapsulation using the ephemeral key, to provide forward secrecy.
Key encapsulation using the initiator’s static key, to authenticate the
initiator, and non-forward-secret confidentiality.
The responder transmits their state to the initiator in an encrypted container
to avoid having to store state.
Add a message authentication code for the same reason as above.

IHI1

RHI1

ICI1

IHR1

RHR1

ICR1

IHI4

RHI4

ICI4

IHR4

RHR4

ICR4

IHI5

RHI5

ICI5

IHR5

RHR5

ICR5

IHI2

RHI2

ICI2

RHR2

ICR2

IHI6

RHI6

ICI6

IHR6

RHR6

ICR6

IHI3

RHI3

ICI3

RHR3

ICR3

IHI7

RHI7

ICI7

IHR7

RHR7

ICR7

IHI8 IHR8

← lookup_session(sidi);
mix(sidr, sidi);
decaps_and_mix<EKEM>(eski, epki, ecti);

decaps_and_mix<SKEM>(sski, spki, scti);

mix(biscuit)

decrypt_and_mix(auth)

← random_session_id()sidr

mix(sidr, sidi);
← encaps_and_mix<EKEM>(epki);ecti

← encaps_and_mix<SKEM>(spki);scti

← store_biscuit();biscuit

← encrypt_and_mix(empty());auth

mix(sidi, sidr);

auth ← encrypt_and_mix(empty);

enter_live();

biscuit_no ← load_biscuit(biscuit);
encrypt_and_mix(empty());

mix(sidi, sidr);

decrypt_and_mix(auth);

assert(biscuit_no > biscuit_used);
biscuit_used ← biscuit_no;

enter_live();

Responder loads their biscuit. This restores the state from after RHR6.

Responder recomputes RHR7, since this step was performed after biscuit encoding.
Mix both session IDs as part of the protocol transcript.
Message authentication code for the same reason as above, which in particular
ensures that both participants agree on the final chaining key.
Biscuit replay detection.

Biscuit replay detection.
Derive the transmission keys, and the output shared key for use asWireGuard’s PSK.

InitHello { sidi, epki, sctr, pidiC, auth }

RespHello { sidr, sidi, ecti, scti, biscuit, auth }

InitConf { sidi, sidr, biscuit, auth }

1

4

5

2

3

6

7/11



Professional illustrators create stunning graphics

hash function
applicationchaining key"string constant"

outputpseudo-random labelinput variable
0

RespHello

state from InitHello

sidr

epki

epti

scti

sidi

ecti

spki

spti

InitHello

sidi

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

epki

spkr

spki

sctr

psk

sptr

spkr
PROTOCOL

Global Domains

"user"

"mix"

"rosenpass.eu" "wireguard psk"

"key chaining init"

mix

"handshake encryption"

"initiator session encryption"

"responder session encryption"

"mac" spkt

"cookie"

"biscuit additional data"

"peer id"

"key chaining extract"

MAC_WIRE_DATA

COOKIE_WIRE_DATA

spkr sidi sidr

spki spkr

en
cr
yp

ta
ut
h

AEAD::enc(pidi)

store_biscuit()

AEAD::enc(empty())

AEAD::enc(empty())

AEAD::enc(empty())

data

pidi

key

ck

key

key

key

pidiC

biscuit

auth

auth

ct

InitConf

state from RespHello

osk

ini_enc

res_enc

mac

cookie

biscuit_ad

pidi pidr

pidi

pidi

mix

osk

osk

hs_enc

hs_enc

hs_enc

hs_enc

hs_enc
ini_enc

ini_enc

res_enc res_enc

sidi

sidr

8/11



Creating successful projects by knowing what not to
do

• Rosenpass avoids targeting: GUIs, VPN data transport, support for many
platforms

• Instead we: Created a core technology; working with companies to integrate
Rosenpass (e.g. Open-Source VPN startups)

• Vitally we chose to focus on API; making it easy to integrate Rosenpass
• Vitally we integrate with the existing ecosystem (i.e. WireGuard) instead of trying

to replace it

9/11



Starting partnerships…

• with Open-Source VPN companies
• with Kubernetes VPN companies
• with Quantum-Key-Distribution Projects
• to verify the Rosenpass source code
• to apply isolation features to Rosenpass (Micro-VMs)
• with university teaching departments to use the project as a simple example of

bleeding-edge modern crypto

10/11



Talk to me about…

• using Rosenpass as demonstrator-project to integrate new cryptographic
technologies in

• figuring out how to attract independent contributors to Formosa Projects
• applying API-focused techniques to Formosa projects to emphasize

interoperability
• Idea: Providing XML-representations of proof assistants’6 inputs and outputs to

allow easy integration with external tools
• Idea: Python libraries to work with Formosa tools as everybody knows python

6 EasyCrypt, CryptoVerif, ProVerif, Tamarin
11/11


