
Håck ma’s 2024, Schloss in Ottenschlag
2024-08-30

How to build post-quantum cryptographic protocols
and why wall clocks are not to be trusted.

Karolin Varner, Benjamin Lipp, and Lisa Schmidt
with support from Alice Bowman, and Marei Peischl

https://rosenpass.eu

https://rosenpass.eu

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

This is the Plan

1. Introducing Rosenpass, briefly.

2. The Design of Rosenpass and basics about post-quantum protocols.

3. Hybrid Security – how it can be done and how we do it.

4. ChronoTrigger Attack and not trusting wall clocks.

5. Protocol Proofs – big old rant!

6. Q&A – and probably “more of a comment”.

Follow the talk at:
rosenpass.eu/docs/ presentations/hackmas-2024/

Watch the presentation at:
media.ccc.de/v/how-to-build-post-quantum-cryptographic-protocols-and-why-wall-clocks-are-not-to

1

https://rosenpass.eu/docs/presentations/hackmas-2024/
https://media.ccc.de/v/how-to-build-post-quantum-cryptographic-protocols-and-why-wall-clocks-are-not-to

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Introducing Rosenpass, briefly

• A post-quantum secure key exchange protocol based on the
paper Post-Quantum WireGuard [PQWG]

• An open source Rust implementation of that protocol,
already in use

• A way to secure WireGuard VPN setups against quantum
attacks

• A post-quantum secure VPN
• A governance organization to facilitate development,

maintenance, and adoption of said protocol

rosenpass.eu
2

https://eprint.iacr.org/2020/379
https://rosenpass.eu

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

The Design of Rosenpass
and how to build post-quantum protocols

3

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Glossary: Post-Quantum Security

Pre-quantum
cryptography is …
… susceptible to attacks from
quantum computers.

• specifically, to
Shor’s Algorithm

• quite fast

• widely trusted

Post-quantum
cryptography is …
… not susceptible to attacks
from quantum computers.

• generally less efficient.

• much bigger ciphertexts.

• less analyzed.

Hybrid cryptography
combines …
… the combination of the
previous two. It is …

• about as inefficient as
post-quantum
cryptography.

• not widely adopted, which
is a major problem.

4

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Attacks from Quantum Computers: Shor’s algorithm

With Jargon: Solves a couple of mathematical problems that most
modern cryptography is based upon.

• RSA, “Rivest-Shamir-Adleman”, based on the problem of factorizing
prime numbers

• DH, “Diffie-Hellmann”, based on the discrete logarithm problem

• ECDH, “Elliptic Curve Diffie-Hellmann”, based on elliptic curve
discrete logarithm problem

Less Jargon: Breaks most modern, asymmetric cryptography.
5

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Munch now decrypt later

• Post-Quantum Cryptography was just
standardized [MK-KEM]

• Attackers can store important data and
decrypt it once quantum computers are
available

6

https://csrc.nist.gov/pubs/fips/203/final

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

What Post-Quantum gotEncryption in the Face of Quantum Computing

AEAD

KEM NIKE
asymmetric

available

not available

symmetric

7

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

KEMs and NIKEs

Key Encapsulation Method

fn Kem::encaps(Pk) -> (Shk, Ct);

fn Kem::decaps(Pk, Ct) -> Shk;

(shk, ct) = encaps(pk);

assert!(decaps(sk, ct) = shk)

Non-Interactive Key Exchange

fn nike(sk: Sk, pk: Pk) -> Shk;

assert!(nike(sk1, pk2) =

nike(sk2, pk1));

Think of it as encrypting a key and sending it
to the partner.

• secrecy

• implicit authentication of recipient
(assuming they have the shared key, they
must also have their secret key)

Aka. Diffie-Hellman. Note how the keypairs
are crossing over to each other.

• secrecy

• implicit mutual authentication (for each
party: assuming they have the shared key,
they must also have their secret key)

8

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Protocol Security Properties

Implicit authentication
“If you have access to this shared symmetric
key then you must have a particular
asymmetric secret key.”

Explicit authentication
“I know you have access to this shared key
because I checked by making you use it,
therefore you also have a particular
asymmetric secret key.”

Secrecy
“The data we exchange cannot be decrypted
unless someone gets their hands on some of
our static keys!”

Forward secrecy
“Even if our static keys are exposed, the data
we exchanged cannot be retroactively
decrypted!”*

* Forward Secrecy – terms and conditions apply:
We are using an extra key that we do not call a static key. This key is generated on the fly, not written to disk and immediately erased
after use, so it is more secure than our static keys. Engaging in cryptography is a magical experience but technological constructs can
– at best – be asymptotically indistinguishable from miracles.

9

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

KEMs and NIKEs: Key Exchange

Key Encapsulation Method

Responder Authentication: Initiator
encapsulates key under the responder public
key.

Initiator Authentication: Responder
encapsulates key under the initiator public
key.

Forward Secrecy: In case the secret keys get
stolen, either party generates a temporary
keypair and has the other party encapsulate a
secret under that keypair.

How to do this properly? See Rosenpass.

Non-Interactive Key Exchange

Responder Authentication: Static-static NIKE
since NIKE gives mutual authentication.

Initiator Authentication: Static-static NIKE
since NIKE gives mutual authentication.

Forward secrecy: Another NIKE, involving a
temporary keypair.

How to do this properly? See the Noise
Protocol Framework. [NOISE]

10

https://noiseprotocol.org/noise.html

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

KEMs and NIKEs

Key Encapsulation Method

trait Kem {

// Secret, Public, Symmetric, Ciphertext

type Sk; type Pk; type Shk; type Ct;

fn genkey() -> (Sk, Pk);

fn encaps(pk: Pk) -> (Shk, Ct);

fn decaps(sk: Pk, ct: Ct) -> Shk;

}

#[test]

fn test<K: Kem>() {

let (sk, pk) = K::genkey();

let (shk1, ct) = K::encaps(pk);

let shk2 = K::decaps(sk, ct);

assert_eq!(shk1, shk2);

}

Non-Interactive Key Exchange

trait Nike {

// Secret, Public, Symmetric

type Sk; type Pk; type Shk;

fn genkey() -> (Sk, Pk);

fn nike(sk: Sk, pk: Pk) -> Shk;

}

#[test]

fn test<N: Nike>() {

let (sk1, pk1) = N::genkey();

let (sk2, pk2) = N::genkey();

let ct1 = N::nike(sk1, pk2);

let ct2 = N::nike(sk2, pk1);

assert_eq!(ct1, ct2);

}
11

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass Key Exchange PartsPost-Quantum WireGuard Key Exchange

Initiator InitiatorResponderResponder Responder

epkisctr

(ack)

spkr

ecti(ack)

Responder AuthInitiator Auth Forward Secrecy

Initiator

spki

peer_id
hash of spki:

(ack)

scti

12

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass Protocol Features

InitHello

InitConf Biscuit

RespHello Biscuit

EmptyData

responder
authentication

initiator
authentication,
forward secrecy

acknowledges
InitConf

OSK handed
to WireGuard

Initiator State
Responder StateInitiator Responder

handshake
live phase

• authenticated key exchange

• three KEM operations interleaved
to achieve mutual authentication
and forward secrecy

• no use of signatures

• first package (InitHello) is
unauthenticated

• stateless responder to avoid
disruption attacks

13

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Hybridization

14

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Combining two KEMs with the GHP Combiner

• “Giacon-Heuer-Poettering”
[GHP]

• running both KEMs in parallel

• secret keys, public keys, and
ciphertexts are concatenated

• shared keys are hashed
together

• ciphertexts included in hash
for proof-related reasons

Generic Hybrid Key Encapsulation using the GHP-Combiner

Public KeySecret Key

Shared Key

Hash

sk2

ct2

Ciphertext

ct1

ct1

ct2

ct2

shk1

shk1

shk2

shk2

pk2pk1sk1

shk ct1

KEM1::encaps() KEM2::encaps()

shared key before hashing

15

https://eprint.iacr.org/2018/024

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Turning a NIKE into a KEM
KEM Encapsulation based on NIKE

shared key before hashing

nike_shk

nike_shk

tmp_pk

ctpk

tmp_sk

NIKE::keygen()

NIKE::nike()

Hash

NIKE sk NIKE pk

Shared Key

shk tmp_pk

Ciphertext

Public KeySecret Key

• from the HPKE RFC [HPKE]

• remote keypair is static keypair

• local keypair is temporary keypair

• local keypair public key is treated
as ciphertext

• for proof-related reasons,
ciphertext and public key are
included in hash

• RFC work by Barnes, Bhargavan,
Lipp, Wood supported by analysis
work by Alwen, Blanchet, Hauck,
Kiltz, Lipp, Riepel [HPKE] 16

https://eprint.iacr.org/2020/1499
https://eprint.iacr.org/2020/1499

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

X-Wing [XWING]

• combines ML-KEM and
X25519

• techniques from DHKEM to
turn X25519 into a KEM

• techniques from GHP to
combine the two

• optimizations applied to make
hashing more efficient

• bespoke proof of security

• work by Barbosa, Connolly,
Duarte, Kaiser, Schwabe,
Varner, Westerbaan [XWING]

KEM Encapsulation using X-Wing

en
ca

ps
 u

si
ng

 x
25

51
9

Public KeySecret Key

x25519 pkML-KEM sk ML-KEM pkx25519 sk x25519 pk

ct1shk1

pk

shk2

sk

ct2

x25519::keygen()

x25519::nike()
ML-KEM::encaps()

Hash

Shared Key

shk

Ciphertext

ct1 ct2

shk1 ct2shk2 x25519 pk

shared key before hashing

17

https://eprint.iacr.org/2024/039
https://eprint.iacr.org/2024/039

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass & WireGuard Hybridization
Rosenpass and Wireguard ‒ Hybrid Security

Initiator InitiatorResponder Responder

Rosenpass Wireguard

PSK

PSK

PSK

broken
PSK

Handshake

Handshake≈2min

≈2min

≈2min
Handshake

Handshake

Handshake

Handshake

Handshake

Handshake

Handshake

• Rosenpass and WireGuard are
hybridized on the protocol level

• preserving efficiency of and trust
in WireGuard

• straightforward transition path;
existing WireGuard
implementation remains in use

• key from Rosenpass used as PSK
in WireGuard

18

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Full Protocol Reference in the Whitepaper

Responder Code CommentsInitiator Code

←Action

←Action

←Action

←Action

←Action

←Action

Variables

Variables

Variables

Variables

Variables

Variables

Comment

Comment

Comment

Line

Line

Line

Line

Line

Line

ck

ck

← lhash("chaining key init", spkr)

sidi ← random_session_id();

eski, epki ← EKEM::keygen();

mix(sidi, epki);

sctr ← encaps_and_mix<SKEM>(spkr);

pidiC ← encrypt_and_mix(pidi);

mix(spki, psk);

auth ← encrypt_and_mix(empty())

ck ← lhash("chaining key init", spkr)

mix(sidi, epki)

decaps_and_mix<SKEM>(sskr, spkr, ct1)

spki, psk ← lookup_peer(decrypt_and_mix(pidiC))

mix(spki, psk);

decrypt_and_mix(auth)

Initialize the chaining key, and bind to the responder’s public key.

The session ID is used to associate packets with the handshake state.

Generate fresh ephemeral keys, for forward secrecy.
InitHello includes sidi and epki as part of the protocol transcript, and so we
mix them into the chaining key to prevent tampering.
Key encapsulation using the responder’s public key. Mixes public key, shared
secret, and ciphertext into the chaining key, and authenticates the responder.

Tell the responder who the initiator is by transmitting the peer ID.
Ensure the responder has the correct view on spki. Mix in the PSK as optional
static symmetric key, with epki and spkr serving as nonces.
Add a message authentication code to ensure both participants agree on the
session state and protocol transcript at this point.

Responder generates a session ID.
Initiator looks up their session state using the session ID they generated.
Mix both session IDs as part of the protocol transcript.

Key encapsulation using the ephemeral key, to provide forward secrecy.
Key encapsulation using the initiator’s static key, to authenticate the
initiator, and non-forward-secret confidentiality.
The responder transmits their state to the initiator in an encrypted container
to avoid having to store state.
Add a message authentication code for the same reason as above.

IHI1

RHI1

ICI1

IHR1

RHR1

ICR1

IHI4

RHI4

ICI4

IHR4

RHR4

ICR4

IHI5

RHI5

ICI5

IHR5

RHR5

ICR5

IHI2

RHI2

ICI2

RHR2

ICR2

IHI6

RHI6

ICI6

IHR6

RHR6

ICR6

IHI3

RHI3

ICI3

RHR3

ICR3

IHI7

RHI7

ICI7

IHR7

RHR7

ICR7

IHI8 IHR8

← lookup_session(sidi);
mix(sidr, sidi);
decaps_and_mix<EKEM>(eski, epki, ecti);

decaps_and_mix<SKEM>(sski, spki, scti);

mix(biscuit)

decrypt_and_mix(auth)

← random_session_id()sidr

mix(sidr, sidi);
← encaps_and_mix<EKEM>(epki);ecti

← encaps_and_mix<SKEM>(spki);scti

← store_biscuit();biscuit

← encrypt_and_mix(empty());auth

mix(sidi, sidr);

auth ← encrypt_and_mix(empty);

enter_live();

biscuit_no ← load_biscuit(biscuit);
encrypt_and_mix(empty());

mix(sidi, sidr);

decrypt_and_mix(auth);

assert(biscuit_no > biscuit_used);
biscuit_used ← biscuit_no;

enter_live();

Responder loads their biscuit. This restores the state from after RHR6.

Responder recomputes RHR7, since this step was performed after biscuit encoding.
Mix both session IDs as part of the protocol transcript.
Message authentication code for the same reason as above, which in particular
ensures that both participants agree on the final chaining key.
Biscuit replay detection.

Biscuit replay detection.
Derive the transmission keys, and the output shared key for use asWireGuard’s PSK.

InitHello { sidi, epki, sctr, pidiC, auth }

RespHello { sidr, sidi, ecti, scti, biscuit, auth }

InitConf { sidi, sidr, biscuit, auth }

1

4

5

2

3

6

…
hash function
applicationchaining key"string constant"

outputpseudo-random labelinput variable
0

RespHello

state from InitHello
en

ca
ps

 s
pk

i
en

ca
ps

 e
pk

i
en

cr
yp

t a
ut

h

sidr

epki

epti

scti

sidi

ecti

spki

spti

InitHello

sidi

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

epki

spkr

spki

sctr

psk

sptr

spkr
PROTOCOL

Global Domains

"user"

"mix"

"rosenpass.eu" "wireguard psk"

"chaining key init"

mix

"handshake encryption"

"initiator session encryption"

"responder session encryption"

"mac" spkt

"cookie"

"biscuit additional data"

"peer id"

"chaining key extract"

 MAC_WIRE_DATA

COOKIE_WIRE_DATA

spkr sidi sidr

spki spkr
en

cr
yp

t a
ut

h

en
ca

ps
 s

pk
r

en
cr

yp
t l

tk
en

cr
yp

t a
ut

h

AEAD::enc(pidi)

store_biscuit()

AEAD::enc(empty())

AEAD::enc(empty())

AEAD::enc(empty())

data

pidi

key

ck

key

key

key

pidiC

biscuit

auth

auth

ct

InitConf

state from RespHello

osk

ini_enc

res_enc

mac

cookie

biscuit_ad

pidi pidr

pidi

pidi

mix

osk

osk

hs_enc

hs_enc

hs_enc

hs_enc

hs_enc
ini_enc

ini_enc

res_enc res_enc

sidi

sidr

rosenpass.eu/docs

rosenpass.eu/whitepaper.pdf

19

https://rosenpass.eu/docs
https://rosenpass.eu/whitepaper.pdf

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Trials ~ Attacks found

ChronoTrigger

20

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Retransmission Protection in WireGuard

tim
e

Data

Data

Data

Data

InitHello 1

InitHello 2

Data

RespHello 1

RespHello 2

Data

package accepted

package accepted

kill token
correctly rejected,
timestamp mismatch

handshake started

handshake started

Initiator

Attacker

Responder

STATESTATE

timestamp = 1
=> kill token

timestamp = 2

Kill Token
InitHello 1

timestamp = 1

ck <- f(InitHello1)
ts <- InitHello1.ts = 1

ck <- f(InitHello2)
ts <- InitHello2.ts = 2

ck <- f(ck, RespHello1)
ts [unchanged]

ck <- f(ck, RespHello2)
ts [unchanged]

ck [unchanged]
ts [unchanged]

WireGuard Retransmission Protection
intended function

• replay attacks thwarted by counter

• counter is based on real-time clock

• responder is semi-stateful (one
retransmission at program start may be
accepted, but this does not affect protocol
security)

⇒ WG requires either reliable real-time clock
or stateful initiator

⇒ adversary can attempt replay, but this
cannot interrupt a valid handshake by the
initiator

! Assumption of reliable system time is
invalid in practice! 21

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

ChronoTrigger Attack
ChronoTrigger attack against WireGuard ‒ Delayed Execution

state disruption attack against WireGuard based on the insecurity of the Network Time Protocol

Data

InitHello 1

InitHello 2

InitHello 3

Data

RespHello 1

Data

package accepted

valid initiation
rejected due to
timestamp mismatch

valid initiation
rejected due to
timestamp mismatch

handshake started

Initiator

Attacker

Responder

STATESTATE

timestamp = 101
=> kill token

timestamp = 2

timestamp = 3

Set Time
time = 100

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

ck <- f(InitHello2)
ts <- InitHello2.ts = 2

ck <- f(InitHello3)
ts <- InitHello3.ts = 3

ck <- f(ck, RespHello1)
ts [unchanged]

STATE DISRUPTION!
package accepted

Kill Token
InitHello 1

timestamp = 101

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

Reboot: Timestamps lostReboot OR Reset Time
time = 1time = 1

tim
e

A. Preparation phase:

1. Attacker sets initiator system time to a
future value

2. Attacker records InitHello as KillToken
while both peers are performing a valid
handshake

… both peers are being reset …
B. Delayed execution phase:

1. Attacker sends KillToken to responder,
setting their timestamp to a future value

⇒ Initiation now fails again due to timestamp
mismatch

22

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

ChronoTrigger Attack
ChronoTrigger attack against WireGuard ‒ Delayed Execution

state disruption attack against WireGuard based on the insecurity of the Network Time Protocol

Data

InitHello 1

InitHello 2

InitHello 3

Data

RespHello 1

Data

package accepted

valid initiation
rejected due to
timestamp mismatch

valid initiation
rejected due to
timestamp mismatch

handshake started

Initiator

Attacker

Responder

STATESTATE

timestamp = 101
=> kill token

timestamp = 2

timestamp = 3

Set Time
time = 100

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

ck <- f(InitHello2)
ts <- InitHello2.ts = 2

ck <- f(InitHello3)
ts <- InitHello3.ts = 3

ck <- f(ck, RespHello1)
ts [unchanged]

STATE DISRUPTION!
package accepted

Kill Token
InitHello 1

timestamp = 101

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

Reboot: Timestamps lostReboot OR Reset Time
time = 1time = 1

tim
e

Gaining access to system time:

• Network Time Protocol is insecure,
mitigations are of limited use

⇒ break NTP once; kill token lasts forever

22

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

ChronoTrigger Attack
ChronoTrigger attack against WireGuard ‒ Delayed Execution

state disruption attack against WireGuard based on the insecurity of the Network Time Protocol

Data

InitHello 1

InitHello 2

InitHello 3

Data

RespHello 1

Data

package accepted

valid initiation
rejected due to
timestamp mismatch

valid initiation
rejected due to
timestamp mismatch

handshake started

Initiator

Attacker

Responder

STATESTATE

timestamp = 101
=> kill token

timestamp = 2

timestamp = 3

Set Time
time = 100

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

ck <- f(InitHello2)
ts <- InitHello2.ts = 2

ck <- f(InitHello3)
ts <- InitHello3.ts = 3

ck <- f(ck, RespHello1)
ts [unchanged]

STATE DISRUPTION!
package accepted

Kill Token
InitHello 1

timestamp = 101

ck <- f(InitHello1)
ts <- InitHello1.ts = 101

Reboot: Timestamps lostReboot OR Reset Time
time = 1time = 1

tim
e

Attacker gains

• extremely cheap protocol-level DoS

Preparation phase, attacker needs:

• eavesdropping of initiator packets

• access to system time

Delayed execution, attacker needs:

• no access beyond message transmission to
responder

22

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

What are State Disruption Attacks?

Protocol-level DoS

23

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

ChronoTrigger: Changes in Rosenpass

Data

InitConf
InitConf

InitHello InitHello
InitHello

RespHello RespHello

Data Data

RespHello

Initiator Initiator InitiatorResponder Responder Responder

STATE

WireGuard Post-Quantum WireGuard Rosenpass

PSK

PSK

PSK
authenticated

authenticated

NOT authenticated

NOT authenticated

authenticated

timestamp for
retransmission
protection

timestamp for
retransmission
protection

stateless

Susceptible to
ChronoTrigger

Susceptible to
ChronoTrigger Not susceptible due to

stateless responder
even without NTP access!

Biscuit

Biscuit

Post-Quantum WireGuard allows state disruption since InitHello is unauthenticated

Data

InitConf
InitConf

InitHello InitHello
InitHello

RespHello RespHello

Data Data

RespHello

Initiator Initiator InitiatorResponder Responder Responder

STATE

WireGuard Post-Quantum WireGuard Rosenpass

PSK

PSK

PSK
authenticated

authenticated

NOT authenticated

NOT authenticated

authenticated

timestamp for
retransmission
protection

timestamp for
retransmission
protection

stateless

Susceptible to
ChronoTrigger

Susceptible to
ChronoTrigger Not susceptible due to

stateless responder
even without NTP access!

Biscuit

Biscuit

Post-Quantum WireGuard allows state disruption since InitHello is unauthenticated

• InitHello is unauthenticated because responder still
needs to encapsulate secret with initiator key

• since InitHello is unauthenticated, retransmission
protection is impossible

• responder state is moved into a cookie called Biscuit;
this renders the responder stateless

• retransmission of InitHello is now easily possible, but
does not lead to a state disruption attack

⇒ stateless responder prevents ChronoTrigger attack

24

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass Key Derivation Chain: Spot the Biscuit

hash function
applicationchaining key"string constant"

outputpseudo-random labelinput variable
0

RespHello

state from InitHello

en
ca

ps
 s

pk
i

en
ca

ps
 e

pk
i

en
cr

yp
t a

ut
h

sidr

epki

epti

scti

sidi

ecti

spki

spti

InitHello

sidi

mixmix

mixmix

mixmix

mixmix

mixmix
mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

epki

spkr

spki

sctr

psk

sptr

spkr
PROTOCOL

Global Domains

"user"

"mix"

"rosenpass.eu" "wireguard psk"

"chaining key init"

mix

"handshake encryption"

"initiator session encryption"

"responder session encryption"

"mac" spkt

"cookie"

"biscuit additional data"

"peer id"

"chaining key extract"

 MAC_WIRE_DATA

COOKIE_WIRE_DATA

spkr sidi sidr

spki spkr

en
cr

yp
t a

ut
h

en
ca

ps
 s

pk
r

en
cr

yp
t l

tk
en

cr
yp

t a
ut

h
AEAD::enc(pidi)

store_biscuit()

AEAD::enc(empty())

AEAD::enc(empty())

AEAD::enc(empty())

data

pidi

key

ck

key

key

key

pidiC

biscuit

auth

auth

ct

InitConf

state from RespHello

osk

ini_enc

res_enc

mac

cookie

biscuit_ad

pidi pidr

pidi

pidi

mix

osk

osk

hs_enc

hs_enc

hs_enc

hs_enc

hs_enc
ini_enc

ini_enc

res_enc res_enc

sidi

sidr

25

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass Protocol Messages: Spot the Biscuit

type
reserved

payload

mac
cookie

1
3

n

16
16

envelope n + 36

Envelope
bytes

M
A
C
_W
IR
E_
D
AT
A

CO
O
KI
E_
W
IR
E_
D
AT
A

InitHello
type=0x81

sidi
epki
sctr
pidiC
auth

4
800
188

32 + 16 = 48
16

payload 1056
+ envelope 1092

RespHello
type=0x82

sidr
sidi
ecti
scti
biscuit
auth

4
4

768
188

76 + 24 + 16 = 116
16

payload 1096
+ envelope 1132

data nonce auth code

EmptyData
type=0x84

sid
ctr
auth

4
8
16

payload 28
+ envelope 64

CookieReply
type=0x86

type(0x86)
reserved
sid
nonce
cookie

1
3
4
24

16 + 16 = 32

payload 64

InitConf
type=0x83

sidi
sidr
biscuit
auth

4
4

76 + 24 + 16 = 116
16

payload 140
+ envelope 176

Data
type=0x85

sid
ctr
data

4
8

variable + 16

payload variable + 28
+ envelope variable + 64

biscuit
32
12
32

biscuit 76
+ nonce 100

+ auth code 116

pidi
biscuit_no
ck

26

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Tribulations ~ Tooling

Oh These
Proof Tools
Vive la Révolution! Against the

Bourgeoisie of Proof Assistants!

27

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Pen and Paper

Bellare and Rogaway: [BR06]
many “essentially unverifiable” proofs, “crisis of rigor”

Halevi: [Hal05]
some reasons are social, but “our proofs are truly complex”

28

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Symbolic Modeling of Rosenpass

• symbolic modeling using ProVerif
• proofs treated as part of the

codebase
• uses a model internally that is

based on a fairly comprehensive
Maximum Exposure Attacks (MEX)
variant

• covers non-interruptability
(resistance to disruption attacks)

• mechanized proof in the
computational model is an open
issue

29

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Rosenpass going Rube-Goldberg

We will build a
framework around
existing tools

Keep expressivity and
preciseness

Generate & Parse their
languages

Make these tools
available to other
ecosystems using
Python, Lisp, XML

30

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Epilogue

31

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Epilogue

Rosenpass

• post-quantum secure AKE

• same security as
WireGuard

• improved state disruption
resistance

• transfers key to WireGuard
for hybrid security

rosenpass.eu

About Protocols

• it is possible to treat NIKEs
as KEMs with DHKEM

• the GHP Combiner can be
used to combine multiple
KEMs

• X-Wing makes this easy

• wall clocks are not to be
trusted

Talk To Us

• adding syntax rewriting to
the tool belt of mechanized
verification in cryptography

• using broker architectures
to write more secure
system applications

• using microvms to write
more secure applications

• more use cases for
rosenpass

32

https://rosenpass.eu

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Appendix — Here Be Dragons

33

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Bibliography

[PQWG]: https://eprint.iacr.org/2020/379

[GHP]: https://eprint.iacr.org/2018/024

[HPKE]: https://eprint.iacr.org/2020/1499 (analysis) &
https://www.rfc-editor.org/rfc/rfc9180.html (RFC)

[XWING]: https://eprint.iacr.org/2024/039

[NOISE]: https://noiseprotocol.org/noise.html

[BR06]: https://eprint.iacr.org/2004/331

[Hal05]: https://eprint.iacr.org/2005/181

[MK-KEM]: https://csrc.nist.gov/pubs/fips/203/final
34

https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2020/1499
https://eprint.iacr.org/2020/1499
https://www.rfc-editor.org/rfc/rfc9180.html
https://eprint.iacr.org/2024/039
https://eprint.iacr.org/2024/039
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2005/181
https://eprint.iacr.org/2005/181
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/203/final

How to build post-quantum cryptographic protocols and why wall clocks are not to be trusted.

Graphics attribution

• https://unsplash.com/photos/brown-rabbit-Efj0HGPdPKs

• https://unsplash.com/photos/barista-in-apron-with-hands-in-the-pockets-standing-near-the-roaster-machine-Y5qjv6Dj4w4

• https://unsplash.com/photos/a-small-rabbit-is-sitting-in-the-grass-1_YMm4pVeSg

• https://unsplash.com/photos/yellow-blue-and-black-coated-wires-iOLHAIaxpDA

• https://foto.wuestenigel.com/gray-hamster-eating-sunflower-seed/

• https://unsplash.com/photos/gray-rabbit-XG06d9Hd2YA

• https://unsplash.com/photos/big-ben-london-MdJq0zFUwrw

• https://unsplash.com/photos/white-rabbit-on-green-grass-u_kMWN-BWyU

• https://unsplash.com/photos/3-brown-bread-on-white-and-black-textile-WJDsVFwPjRk

• https://unsplash.com/photos/a-pretzel-on-a-bun-with-a-blue-ribbon-ymr0s7z6Ykk

• https://unsplash.com/photos/white-and-brown-rabbit-on-white-ceramic-bowl-rcfp7YEnJrA
35

https://unsplash.com/photos/brown-rabbit-Efj0HGPdPKs
https://unsplash.com/photos/barista-in-apron-with-hands-in-the-pockets-standing-near-the-roaster-machine-Y5qjv6Dj4w4
https://unsplash.com/photos/a-small-rabbit-is-sitting-in-the-grass-1_YMm4pVeSg
https://unsplash.com/photos/yellow-blue-and-black-coated-wires-iOLHAIaxpDA
https://foto.wuestenigel.com/gray-hamster-eating-sunflower-seed/
https://unsplash.com/photos/gray-rabbit-XG06d9Hd2YA
https://unsplash.com/photos/big-ben-london-MdJq0zFUwrw
https://unsplash.com/photos/white-rabbit-on-green-grass-u_kMWN-BWyU
https://unsplash.com/photos/3-brown-bread-on-white-and-black-textile-WJDsVFwPjRk
https://unsplash.com/photos/a-pretzel-on-a-bun-with-a-blue-ribbon-ymr0s7z6Ykk
https://unsplash.com/photos/white-and-brown-rabbit-on-white-ceramic-bowl-rcfp7YEnJrA

	Section: Prelude
	Section Intro
	The Design of Rosenpass
	State Disruption
	Section: Better proof tools

