

Sicherheit²

Das Zusammenspiel von Safety & Security im Fokus der Kryptoagilität

Karolin Varner & Wanja Zaeske https://rosenpass.eu

Der Plan

- 1. Wir stellen uns vor
- 2. Safety & Security: Kulturelle Aspekte
- 3. Kryptografie und Avionik im Dialog
- 4. Kryptoagilität erreichen

Folien

Karolin Varner

- Software-Entwicklerin & Kryptografin
- 11 Jahre in der Industrie bei Startups und Konzernen
- Seit 2024 am Max-Planck-Institut für Sicherheit und Privatsphäre
- Initiatorin & Leiterin des Rosenpass e.V.
- Arbeit an weiteren Projekten wie zum Beispiel der X-Wing Chiffre

Wanja Zaeske

- Researcher & Software-Entwickler
- 4 Jahre Forschung im Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Schwerpunkt: moderne Softwaretechnologien in die Avionik bringen
- Mitgründer von Rosenpass e.V.

Rosenpass e.V.

- 2023 gegründet zur Betreuung des gleichnamigen Projekts
- Absicherung von WireGuard gegen Attacken durch Quantencomputer mittels protocol-level Hybridisierung
- Institution für Translationsforschung in der Kryptografie
- Schnittstelle zwischen Forschung, Industrie und Gesellschaft

rosenpass.eu

Safety & Security in Computersystemen

Mensch in Gefahr

Safety

Daten in Gefahr

Security

Problemstellungen & Rahmenbedingungen

	Safety	Security
Abgehangene Sofware	Stabil!	Unsicher?
Zieldefinition	Stabil (Physik bleibt gleich)	In Bewegung (Angreifer lernen)
Fehlerauftreten	Zufällig	Gezielt (durch Angreifer)
Fehlerbehandlung	Weiterbetrieb notwendig	System stoppen
Validierungsprozess	Normiert	Dynamisch

Vertrauen schaffen: Akzeptanzkriterien

	Safety		Security	
	Konfidenz	Verbreitung	Konfidenz	Verbreitung
Proven-in-use			_	
Praktische Tests				
Externe Audits				
Mathematische Beweise		_		

Verbreitung Häufigkeit als tragendes Argument im Assurance-Case **Konfidenz** Vertrauen in das Kriterium

Ingenieurskulturen

$Safety \Longrightarrow konservativ$

- Menschen sterben bei Versagen
- Probleme sind verstanden und stabil

Security \Longrightarrow progressiv

- Versagen erzeugt eher finanziellen Schaden
- Problemtypen sind dynamisch und ändern sich dauernd

Security + Safety ⇔ konservativ ∮ progressiv

- Menschen sterben bei Versagen
- Probleme sind dynamisch, Zielsetzung in Bewegung

SAFETY + SECURITY: CHECKLISTE HOHE ZUVERLÄSSIGKEIT • KLARHEIT ÜBER SYSTEMZIELE UNABHÄNGIGES REVIEW...... • ANALYSE VON SOFTWARESYSTEMEN IN REELLER HARDWARE... • KRYPTOAGILITÄT

Die vier Domänen der Sicherheit sind...

Luftfahrt

Automotive

Medizinte chnik

Automatisierung

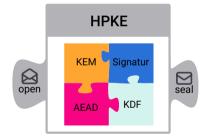
Sichere Kryptografie in der Avionik

zirp zirp

Zum Erschrecken aller...

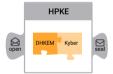
...wird in der Luftfahrt heutzutage keine sichere Kryptografie eingesetzt.

Security-Aspekte

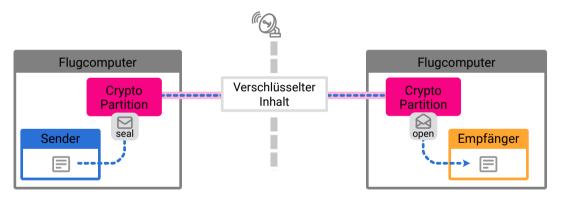


- · Keine Verschlüsselung
- "ACARS message security" (klassische Kryptographie) in der Praxis kaum verwendet
- Noch immer keine Pläne für postquantensichere Kryptographie
- · Keine neuen Security-Features
- · Link Layer Security
- **Vorschlag** für postquantensichere Kryptographie
- Vorschlag von 2021 wird gebrochen!
 Kryptoagilität ist dringend nötig!

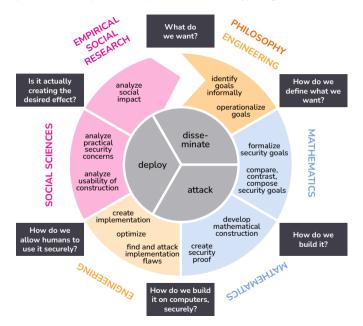
Kryptographie in der Avionik: Unser Ansatz


- Kryptographischer Standard: Hybrid Public Key Encryption (HPKE)
- Schnittstelle von HPKE
 - Seal: Nachricht verschlüsseln (und signieren)
 - Open: Nachricht entschlüsseln (und prüfen)

Flexible Einsatzszenarien, gleiche Schnittstelle



- Pre oder post-quantum?
- Mehr oder weniger Speicherbedarf?
- Schnell oder langsam?
- Post-quantum Authentisierung?


Partitionen zur Integration in die Avionik

Das Zusammenspiel von Safety & Security im Fokus der Kryptoagilität

Technik: Empfehlungen für die Umsetzung

- Klare Zielsetzung
 - Modularisierung reduziert Scope, ermöglicht Fokus
 - Tiefgreifendes Problemverständnis, Schutz wie und wogegen?
- Spielraum
 - Infrastruktur für Continuous Delivery
 - Freiheit, technische Neuerungen zu integrieren

Prozess: Empfehlungen für die Planung

- Knowledge-Management
 - Dokumentation von Anforderungen und Entscheidungen
- Change-Management
 - Incident Response
 - Neue mit alten Anforderungen zusammenführen
- Continuous ...
 - ...Development
 - ...Delivery
 - ...Deployment

Kultur: nachhaltig kryptoagil

Kooperation

Kultur

Kontrolle

Staatliche Förderung

Methodenforschung

Offene Werkzeuge

Freundlicher Wettbewerb

Kollegiale Unterstützung

Förderung von Austausch

Weitsicht

Gründlichkeit

Transparenz

Innovation

Reaktionsfähigkeit

Ehrlichkeit

Zusammenarbeit

Staatliche Kontrolle

Zertifizierung

Unabhängige Reviews

Das Zusammenspiel von Safety & Security im Fokus der Kryptoagilität

Kryptoagilität

Leitmotiv

Das Zusammenspiel von Safety & Security im Fokus der Kryptoagilität **AVIATE** Was müssen wir konkret tun? Modularisierung, **Continuous Delivery NAVIGATE** Was müssen wir für die Zukunft planen? robust, aber mit Blick auf die Zukunft **COMMUNICATE** Wie arbeiten wir zusammen? interdisziplinäre Zusammenarbeit, Fördern und Fordern