
Penetration Test Report

Rosenpass

V 1.0
Amsterdam, January 4th, 2024
Public

Document Properties

Client Rosenpass

Title Penetration Test Report

Target Rosenpass

Version 1.0

Pentester Morgan Hill

Authors Morgan Hill, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 December 22nd, 2023 Morgan Hill Initial draft

0.2 December 29th, 2023 Marcus Bointon Review

1.0 January 4th, 2024 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 5

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 6

2 Methodology 7
2.1 Planning 7

2.2 Risk Classification 7

3 Reconnaissance and Fingerprinting 9

4 Findings 10
4.1 CLN-006 — Denial of service with one byte (RUSTSEC-2023-0077) 10

4.2 CLN-009 — GitLab CI config may temporally expose SSH private key to other users on the
host 11

4.3 CLN-010 — GitHub release workflow uses unmaintained action 12

4.4 CLN-011 — GitHub QC workflow uses unmaintained actions from actions-rs 13

4.5 CLN-012 — RespHello Biscuit and Auth fields swapped in implementation versus
protocol paper 14

5 Non-Findings 16
5.1 NF-007 — Logs when key is stale 16

5.2 NF-008 — No command injection possible in RP script 16

6 Future Work 17

7 Conclusion 18

Appendix 1 Testing team 19

1 Executive Summary

1.1 Introduction

Between November 2, 2023 and December 22, 2023, Radically Open Security B.V. carried out a penetration test for

Rosenpass.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Rosenpass

1.3 Project objectives

ROS will perform a penetration test of Rosenpass with Rosenpass developers in order to assess the security of the

Rosenpass protocol and implementation. To do so ROS will access the Rosenpass source code on GitHub and guide

Rosenpass developers in attempting to find vulnerabilities, exploiting any such found to try and gain further access and

elevated privileges.

1.4 Timeline

The security audit took place between November 2, 2023 and December 22, 2023.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Moderate, 3 Low and 1 N/A-severity issues.

This audit revealed a remotely exploitable DoS condition in the message parsing code CLN-006 (page 10). This issue

was fixed in release 0.2.1. Users running 0.2.0 or earlier will experience a panic if an attacker sends a maliciously

crafted UDP datagram to the Rosenpass daemon, resulting in the process exiting.

The other findings were areas of improvement for CI/CD hardening in CLN-009 (page 11), use of unmaintained

GitHub actions in CLN-010 (page 12) and CLN-011 (page 13), and a discrepancy in field ordering between the

paper and the implementation CLN-012 (page 14).

4 Radically Open Security B.V.

Public

1.6 Summary of Findings

ID Type Description Threat level

CLN-006 Denial of service The message handler does not validate the length of
messages resulting in panics from accessing out of range
indices.

Moderate

CLN-009 Hardening The file mode is set after the file is written, leaving a short
period when the files may have less-strict permissions.

Low

CLN-010 Hardening The softprops/action-gh-release action used in the
release workflow is unmaintained.

Low

CLN-011 Hardening The actions-rs/audit-check GitHub action used in QC
workflow is unmaintained.

Low

CLN-012 Incompatibility The paper suggests the order of the fields is Biscuit then
Auth but the implementation does the reverse.

N/A

1.6.1 Findings by Threat Level

20.0%

60.0%

20.0%

Moderate (1)

Low (3)

N/A (1)

Executive Summary 5

1.6.2 Findings by Type

20.0%

20.0% 60.0%

Hardening (3)

Denial of service (1)

Incompatibility (1)

1.7 Summary of Recommendations

ID Type Recommendation

CLN-006 Denial of service • Check message length against what is expected before processing it
any further.

CLN-009 Hardening • Run umask 077 before writing the SSH private key to the filesystem

CLN-010 Hardening • Find a maintained alternative.
• Regularly check that the actions used are maintained and up to date.
• For high assurance, fork and review all changes to actions used.

CLN-011 Hardening • Find a maintained alternative.
• Regularly check that the actions used are maintained and up to date.
• For high assurance, fork and review all changes to actions used.

CLN-012 Incompatibility • Update the documentation in the paper to match the implementations.

6 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 7

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

8 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – http://nmap.org

Reconnaissance and Fingerprinting 9

http://nmap.org

4 Findings

We have identified the following issues:

4.1 CLN-006 — Denial of service with one byte (RUSTSEC-2023-0077)

Vulnerability ID: CLN-006 Status: Resolved

Vulnerability type: Denial of service

Threat level: Moderate

Description:

The message handler does not validate the length of messages resulting in panics from accessing out of range indices.

Technical description:

The rosenpass::protocol::CryptoServer::handle_msg takes an arbitrary string of bytes and attempts to

decode a Rosenpass protocol message from it. It first uses the first byte to determine what type of message it is as

described; this outer protocol layer is referred to as the envelope. Once the message type is established, an attempt is

made to decode the message in the envelope's payload. The length of the payload is not checked against the expected

length of the message type which results in a panic when the code attempts to access out-of-range memory.

In the Rosenpass daemon, handle_msg receives raw data straight from a UDP socket, making this behaviour remotely

exploitable.

Sending a payload to the daemon over the network:

The daemon crashing:

An example payload:

10 Radically Open Security B.V.

Public

00000000: 84 .

Impact:

An adversary can send small UDP datagrams to a target or targets resulting in Rosenpass crashing. Rosenpass

crashing means that key exchange won't be taking place so the PSK may become stale, or never complete successfully

at all. By default, user data would continue to be passed by the Wireguard interface. In non-finding NF-007 (page 16)

we confirmed that a key becoming stale is logged, but it is however up to the user to monitor and decide what to do if

there is no PSK or the PSK is stale.

Recommendation:

• Check message length against what is expected before processing it any further.

4.2 CLN-009 — GitLab CI config may temporally expose SSH private key to
other users on the host

Vulnerability ID: CLN-009

Vulnerability type: Hardening

Threat level: Low

Description:

The file mode is set after the file is written, leaving a short period when the files may have less-strict permissions.

Technical description:

GitLab CI doesn't set the file-creation mask mode before writing the SSH key to the file system from an environment

variable.

before_script:
 - mkdir ~/.ssh/
 - echo "$SSH_KNOWN_HOSTS" > ~/.ssh/known_hosts
 - echo "$REPO_SSH_KEY" > ~/.ssh/id_ed25519
 - chmod 600 --recursive ~/.ssh/
 - git config --global user.email "ci@gitlab.com"
 - git config --global user.name "CI"

Findings 11

https://github.com/rosenpass/rosenpass/blob/main/.gitlab-ci.yml

Impact:

The SSH key is potentially exposed to other users on the file system for a short time. An attacker with persistence as

another on the CI runner could monitor for and take advantage of this momentary exposure to steal the private key.

Recommendation:

• Run umask 077 before writing the SSH private key to the filesystem

4.3 CLN-010 — GitHub release workflow uses unmaintained action

Vulnerability ID: CLN-010

Vulnerability type: Hardening

Threat level: Low

Description:

The softprops/action-gh-release action used in the release workflow is unmaintained.

Technical description:

Rosenpass uses GitHub actions to automate common operations on the project, such as creating a release. GitHub

actions can include shared third-party automations for common tasks. In this case, Rosenpass has a release workflow

that uses a 3rd-party action to create GitHub releases, but this action does not appear to be actively maintained.

The action: https://github.com/softprops/action-gh-release.

At the time of reporting there has been no release of this action for a year, and no commits to the repository since

March 2023. There are also 26 open PRs, some of which have comments enquiring about whether the project is alive,

suggesting the project is no longer maintained.

Impact:

Actions have a privileged position in project CI/CD pipelines. As such, they could leak credentials such as keys and

tokens, or even inject vulnerabilities into the produced artifacts. In the case of Rosenpass, the project does not yet

12 Radically Open Security B.V.

https://github.com/rosenpass/rosenpass/blob/main/.gitlab-ci.yml
https://github.com/softprops/action-gh-release

Public

provide binary release artifacts for releases. It also appears that this action is unmaintained rather than malicious so the

main concern is vulnerabilities being found in the action and not being addressed.

Recommendation:

• Find a maintained alternative.

• Regularly check that the actions used are maintained and up to date.

• For high assurance, fork and review all changes to actions used.

4.4 CLN-011 — GitHub QC workflow uses unmaintained actions from
actions-rs

Vulnerability ID: CLN-011

Vulnerability type: Hardening

Threat level: Low

Description:

The actions-rs/audit-check GitHub action used in QC workflow is unmaintained.

Technical description:

Similar to CLN-010 (page 12), the QC workflow uses an unmaintained action.

Action: https://github.com/actions-rs/audit-check.

All actions-rs actions have been archived and were not maintained for a period before that.

Impact:

Vulnerabilities found in the unmaintained action or it's dependencies will not be fixed. This could compromise the

integrity of the build system. See CLN-010 (page 12).

Recommendation:

• Find a maintained alternative.

• Regularly check that the actions used are maintained and up to date.

Findings 13

https://github.com/actions-rs/audit-check

• For high assurance, fork and review all changes to actions used.

4.5 CLN-012 — RespHello Biscuit and Auth fields swapped in
implementation versus protocol paper

Vulnerability ID: CLN-012

Vulnerability type: Incompatibility

Threat level: N/A

Description:

The paper suggests the order of the fields is Biscuit then Auth but the implementation does the reverse.

Technical description:

Rosenpass messages in the Rust implementation are serialized and de-serialized using lenses which allow zero copy

operations by interacting with slices of the underlying buffer array. For convenience, these lenses are implemented using

a declarative macro that allows accessing message fields via their names. This macro relies on the order of the fields in

its arguments to determine their offsets within the buffer.

In the case of the RespHello message, the order of fields is different to how the message is documented in the paper.

The implementation has Auth before Biscuit whereas the paper has Biscuit before Auth. This would create

incompatibility with other implementations that follow the paper.

Here is a test demonstrating the expected order versus what is implemented:

mod test_resp_hello {
 use crate::msgs::{RespHelloExt};

 #[test]
 fn doc_msg_order() {
 let mut a = [0u8;1096];
 a[4+4+768+188] = 1; // sidr + sidi + ecti + scti + biscuit + auth
 assert_eq!(a.resp_hello().unwrap().biscuit()[0], 1u8);
 }

 #[test]
 fn impl_msg_order() {
 let mut a = [0u8;1096];
 a[4+4+768+188+16] = 1; // sidr + sidi + ecti + scti + auth + biscuit
 assert_eq!(a.resp_hello().unwrap().biscuit()[0], 1u8);
 }
}

14 Radically Open Security B.V.

Public

The Go implementation constructs this message in the same way as the Rust implementation: https://github.com/cunicu/

go-rosenpass/blob/main/messages.go#L175, suggesting this misordering relative to the docs is a de-facto standard.

Impact:

As all current implementations use the same ordering there is little practical impact. The MAC of the message would

have to be valid in order for the fields to be processed.

Recommendation:

• Update the documentation in the paper to match the implementations.

Findings 15

https://github.com/cunicu/go-rosenpass/blob/main/messages.go#L175
https://github.com/cunicu/go-rosenpass/blob/main/messages.go#L175

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-007 — Logs when key is stale

It is important to ensure there is some record that a key is stale if a peer goes down, is taken down, or the Rosenpass

communication is disrupted. This is important as the user should be made aware that their tunnel no longer has the

same assurances, and they can either fix the issue, continue using it with accepted risk, or shut it down. A log message

is sufficient for this purpose.

We confirmed that a message is logged when a stale key is encountered:

output-key peer iExl8/R3RrfDqQHfTih6B0mceHoQmieYSs7YJihXs6I= key-file "peer-a-rp-out-key" exchanged
output-key peer iExl8/R3RrfDqQHfTih6B0mceHoQmieYSs7YJihXs6I= key-file "peer-a-rp-out-key" exchanged
output-key peer iExl8/R3RrfDqQHfTih6B0mceHoQmieYSs7YJihXs6I= key-file "peer-a-rp-out-key" stale

5.2 NF-008 — No command injection possible in RP script

All the input is escaped correctly using printf '%q' $var, so it was not possible to escape the escaping and inject

commands.

16 Radically Open Security B.V.

Public

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

Future Work 17

7 Conclusion

We discovered 1 Moderate, 3 Low and 1 N/A-severity issues during this penetration test.

Rosenpass is a relatively young project aiming to provide a production-ready Post-Quantum Wireguard VPN solution. An

unbiased audit was seen as an appropriate step to assess its security as adoption increases and the impact becomes

higher.

This engagement was principally carried out by 1 pentester, with support from others at ROS, in collaboration with the

Rosenpass developers.

The bulk of the engagement was conducting a line-by-line code audit generating several leads which were then

subjected to further interrogation. Owing to the generally high code quality, and the safety characteristics of the Rust

programming language, most of these leads could be disregarded.

The moderate severity issue is a DoS condition (RUSTSEC-2023-0077) found by fuzzing the message parsing code.

The bug itself is concealed in a macro that implements zero-copy field accessors based on byte offsets inside the

message buffer, which is missing length checks. In Rust the attempted buffer overread results in a panic; in other

languages this could have been a more severe issue. This message parsing code is hooked directly to a UDP socket,

meaning the DoS condition could be triggered remotely. The issue was identified and fixed promptly by the developers,

and the fix was then tested successfully by the pentester. The fuzz target used to discover this issue was contributed to

Rosenpass along with other fuzz targets created as part of the engagement.

There was also an element of discussion between the developers and ROS around threat modeling and the protocol

itself.

The overall impression from this engagement is of a responsive and engaged project utilizing modern tools to achieve

their aims. Our recommendation is to take a look at hardening CI/CD starting with the 3 low severity issues in this report,

and continue on the current track with the thoughtful consideration of improvements to the protocol and implementation.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

18 Radically Open Security B.V.

Public

Appendix 1 Testing team

Morgan Hill Morgan is a seasoned security consultant with a strong background in DevOps and
IoT. He played a pivotal role in designing and implementing significant portions of
Holoplot's professional audio products, which are prominently used at the MSG Sphere
in Las Vegas. His expertise in media security was showcased when he presented at the
MCH2022 event. Morgan's exceptional performance in the field is further demonstrated
by his position on the SANS Advisory Board, where he achieved a high score and
emerged victorious in the CTF in SEC-488. Aside from his IT accomplishments, Morgan
has also made substantial contributions to the rail sector. He successfully orchestrated
the delivery of new signaling schemes and station remodeling, granting him a unique
perspective on Operational Technology. Currently, he is committed to utilizing his
innovative mindset and skill set to elevate the security landscape.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team 19

