
Karolin Varner*, Benjamin Lipp†, Wanja Zaeske, Lisa Schmidt‡,
Prabhpreet Dua

Abstract

Rosenpass is used to create post-quantum-secure VPNs. Rosenpass computes a shared key,
WireGuard (WG) [10] uses the shared key to establish a secure connection. Rosenpass can
also be used without WireGuard, deriving post-quantum-secure symmetric keys for another
application. The Rosenpass protocol builds on “Post-quantum WireGuard” (PQWG) [11] and
improves it by using a cookie mechanism to provide security against state disruption attacks.

The WireGuard implementation enjoys great trust from the cryptography community and
has excellent performance characteristics. To preserve these features, the Rosenpass applica-
tion runs side-by-side with WireGuard and supplies a new post-quantum-secure pre-shared
key (PSK) every two minutes. WireGuard itself still performs the pre-quantum-secure key ex-
change and transfers any transport data with no involvement from Rosenpass at all.

The Rosenpass project consists of a protocol description, an implementation written in Rust,
and a symbolic analysis of the protocol’s security using ProVerif [9]. We are working on a
cryptographic security proof using CryptoVerif [1].

This document is a guide for engineers and researchers implementing the protocol; a scien-
tific paper discussing the security properties of Rosenpass is work in progress.

Contents

1 Security 4

2 Protocol Description 5
2.1 Cryptographic Building Blocks . 5
2.2 Variables . 6
2.3 Hashes . 8
2.4 Server State . 10
2.5 Helper Functions . 12
2.6 Message Encoding and Decoding . 16

*Independent Researcher
†Max Planck Institute for Security and Privacy (MPI-SP)
‡Scientific Illustrator – mullana.de

This work is licensed under a “CC BY-SA 4.0” license. 6040156 (2024-08-28)

mullana.de
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2

2.7 Dealing with Packet Loss . 18

3 Changelog 19

6040156 (2024-08-28)

3

Figure 1: Rosenpass Key Exchange Protocol

InitHello

InitConf Biscuit

RespHello Biscuit

EmptyData

responder
authentication

initiator
authentication,
forward secrecy

acknowledges
InitConf

OSK handed
to WireGuard

Initiator State
Responder StateInitiator Responder

handshake
live phase

Figure 2: Rosenpass Message Types

type
reserved

payload

mac
cookie

1
3

n

16
16

envelope n + 36

Envelope
bytes

M
A
C
_W
IR
E_
D
AT
A

CO
O
KI
E_
W
IR
E_
D
AT
A

InitHello
type=0x81

sidi
epki
sctr
pidiC
auth

4
800
188

32 + 16 = 48
16

payload 1056
+ envelope 1092

RespHello
type=0x82

sidr
sidi
ecti
scti
biscuit
auth

4
4

768
188

76 + 24 + 16 = 116
16

payload 1096
+ envelope 1132

data nonce auth code

EmptyData
type=0x84

sid
ctr
auth

4
8
16

payload 28
+ envelope 64

CookieReply
type=0x86

type(0x86)
reserved
sid
nonce
cookie

1
3
4
24

16 + 16 = 32

payload 64

InitConf
type=0x83

sidi
sidr
biscuit
auth

4
4

76 + 24 + 16 = 116
16

payload 140
+ envelope 176

Data
type=0x85

sid
ctr
data

4
8

variable + 16

payload variable + 28
+ envelope variable + 64

biscuit
32
12
32

biscuit 76
+ nonce 100

+ auth code 116

pidi
biscuit_no
ck

6040156 (2024-08-28)

4

1 Security

Rosenpass inherits most security properties from Post-QuantumWireGuard (PQWG).
The security properties mentioned here are covered by the symbolic analysis in the
Rosenpass repository.

Secrecy

Three key encapsulations using the keypairs sski/spki, sskr/spkr, and eski/epki pro-
vide secrecy (see Section 2.2 for an introduction of the variables). Their respective ci-
phertexts are called scti, sctr, and ectr and the resulting keys are called spti, sptr,
epti. A single secure encapsulation is sufficient to provide secrecy. We use two dif-
ferent KEMs (Key Encapsulation Mechanisms; see section 2.1.4): Kyber and Classic
McEliece.

Authenticity

The key encapsulation using the keypair sskr/spkr authenticates the responder from
the perspective of the initiator. The KEM encapsulation sski/spki authenticates the
initiator from the perspective of the responder. Authenticity is based on the security of
Classic McEliece alone.

Secrecy and Authenticity based on a Pre-Shared Symmetric Key

We allow the use of a pre-shared key (psk) as protocol input. Even if all asymmetric
security primitives turn out to be insecure, providing a secure pskwill have Rosenpass
authenticate both peers, and output a secure shared key.

Forward Secrecy

Forward secrecy refers to secrecy of past sessions in case all static keys are leaked.
Imagine an attacker recording the network messages sent between two devices, de-
veloping an interest in some particular exchange, and stealing both computers in an at-
tempt to decrypt that conversation. By stealing the hardware, the attacker gains access
to sski, sskr, and the symmetric secret psk. Since the ephemeral keypair eski/epki is
generated on the fly and deleted after the execution of the protocol, it cannot be recov-
ered by stealing the devices, and thus, Rosenpass provides forward secrecy. Forward
secrecy relies on the security of Kyber and on proper zeroization, i.e., the implementa-
tion must erase all temporary variables.

Security against State Disruption Attacks

Both WG and PQWG are vulnerable to state disruption attacks; they rely on a times-
tamp to protect against replay of the first protocol message. An attacker who can

6040156 (2024-08-28)

5

tamper with the local time of the protocol initiator can inhibit future handshakes [2],
rendering the initiator’s static keypair practically useless. Due to the use of the inse-
cure NTP protocol, real-world deployments are vulnerable to this attack [3]. Lacking a
reliable way to detect retransmission, we remove the replay protectionmechanism and
store the responder state in an encrypted cookie called “the biscuit” instead. Since the
responder does not store any session-dependent state until the initiator is interactively
authenticated, there is no state to disrupt in an attack.
Note that while Rosenpass is secure against state disruption, using it does not pro-

tect WireGuard against the attack. Therefore, the hybrid Rosenpass/WireGuard setup
recommended for deployment is still vulnerable.

2 Protocol Description

2.1 Cryptographic Building Blocks

All symmetric keys and hash values used in Rosenpass are 32 bytes long.

2.1.1 Hash

Akeyed hash functionwith one 32-byte input, one variable-size input, and one 32-byte
output. As keyed hash functionwe use theHMAC construction [12]with BLAKE2s [14]
as the inner hash function.

hash(key, data) → key

2.1.2 AEAD

Authenticated encryption with additional data for use with sequential nonces. We use
ChaCha20Poly1305 [13] in the implementation.

AEAD::enc(key, nonce, plaintext, additional_data) → ciphertext

AEAD::dec(key, nonce, ciphertext, additional_data) → plaintext

2.1.3 XAEAD

Authenticated encryption with additional data for use with random nonces. We use
XChaCha20Poly1305 [6] in the implementation, a construction also used by Wire-
Guard.

XAEAD::enc(key, nonce, plaintext, additional_data) → ciphertext

XAEAD::dec(key, nonce, ciphertext, additional_data) → plaintext

6040156 (2024-08-28)

6

2.1.4 SKEM

“Key Encapsulation Mechanism” (KEM) is the name of an interface widely used in post-
quantum-secure protocols. KEMs can be seen as asymmetric encryption specifically for
symmetric keys. Rosenpass uses two different KEMs. SKEM is the key encapsulation
mechanism used with the static keypairs in Rosenpass. The public keys of these key-
pairs are not transmitted over the wire during the protocol. We use Classic McEliece
460896 [5] which claims to be as hard to break as 192-bit AES. As one of the old-
est post-quantum-secure KEMs, it enjoys wide trust among cryptographers, but it has
not been chosen for standardization by NIST. Its ciphertexts and private keys are small
(188 bytes and 13568 bytes), and its public keys are large (524160 bytes). This fits
our use case: public keys are exchanged out-of-band, and only the small ciphertexts
have to be transmitted during the handshake.

SKEM::enc(public_key) → (ciphertext, shared_key)

SKEM::dec(secret_key, ciphertext) → shared_key

2.1.5 EKEM

Key encapsulation mechanism used with the ephemeral KEM keypairs in Rosenpass.
The public keys of these keypairs need to be transmitted over the wire during the pro-
tocol. We use Kyber-512 [7], which has been selected in the NIST post-quantum cryp-
tography competition and claims to be as hard to break as 128-bit AES. Its ciphertexts,
public keys, and private keys are 768, 800, and 1632 bytes long, respectively, provid-
ing a good balance for our use case as both a public key and a ciphertext have to be
transmitted during the handshake.

EKEM::enc(public_key) → (ciphertext, shared_key)

EKEM::dec(secret_key, ciphertext) → shared_key

Using a combination of two KEMs – Classic McEliece for static keys and Kyber for
ephemeral keys – results in large static public keys, but allows us to fit all network
messages into a single IPv6 frame.
Rosenpass uses libsodium [4] as cryptographic backend for hash, AEAD, andXAEAD,

and liboqs [15] for the post-quantum-secure KEMs.

2.2 Variables

2.2.1 KEM Keypairs and Ciphertexts

Rosenpass uses multiple keypairs, ciphertexts, and plaintexts for key encapsulation: a
static keypair for each peer, and an ephemeral keypair on the initiator’s side. We use a
common naming scheme to refer to these variables:

6040156 (2024-08-28)

7

s

Static

e

Ephemeral

sk

Secret Key

pk

Public Key

pt

Plaintext

ct

Ciphertext

i

Initiator

r

Responder

m

Mine

t

Theirs

These values use a naming scheme consisting of four lower-case characters. The first
character indicates whether the key is static s or ephemeral e. The second character
is an s or a p for secret or public. The third character is always a k. The fourth and
final character is an i, r, m, or t, for initiator, responder, mine, or theirs. The initia-
tor’s static public key for instance is spki. During execution of the protocol, three KEM
ciphertexts are produced: scti, sctr, and ecti.
Besides the initiator and responder roles, we define the roles mine and theirs (m/t).

These are sometimes used in the code when the assignment to initiator or responder
roles is flexible. As an example, “this server’s” static secret key is sskm, and the peer’s
public key is spkt.

2.2.2 IDs

Rosenpass uses two types of ID variables. See Figure 3 for how the IDs are calculated.

sid

Session ID

pid

Peer ID

i

Initiator

r

Responder

m

Mine

t

Theirs

The first lower-case character indicates whether the variable is a session ID (sid) or a
peer ID (pid). The final character indicates the role using the characters i, r, m, or t, for
initiator, responder, mine, or theirs respectively.

6040156 (2024-08-28)

8

2.2.3 Symmetric Keys

Rosenpass uses two symmetric key variables psk and osk in its interface, andmaintains
the entire handshake state in a variable called the chaining key.

I psk: A pre-shared key that can be optionally supplied as input to Rosenpass.

I osk: The output shared key, generated by Rosenpass and supplied toWireGuard
for use as its pre-shared key.

I ck: The chaining key.

Wemix all keymaterial (e.g. psk) into the chaining key, and derive symmetric keys such
as osk from it. We authenticate public values by mixing them into the chaining key; in
particular, we include the entire protocol transcript in the chaining key, i.e., all values
transmitted over the network.

2.3 Hashes

Rosenpass uses a cryptographic hash function for multiple purposes:

I Computing themessage authentication code in themessage envelope as inWire-
Guard

I Computing the cookie to guard against denial of service attacks. This is a feature
adopted from WireGuard, but not yet included in the implementation of Rosen-
pass.

I Computing the peer ID

I Key derivation during and after the handshake

I Computing the additional data for the biscuit encryption, to provide some privacy
for its contents

Using one hash function for multiple purposes can cause real-world security issues
and even key recovery attacks [8]. We choose a tree-based domain separation scheme
based on a keyed hash function – the previously introduced primitive hash – to make
sure all our hash function calls can be seen as distinct.
Each tree node ∘ in Figure 3 represents the application of the keyed hash function,

using the previous chaining key value as first parameter. The root of the tree is the
zero key. In level one, the PROTOCOL identifier is applied to the zero key to generate
a label unique across cryptographic protocols (unless the same label is deliberately
used elsewhere). In level two, purpose identifiers are applied to the protocol label to
generate labels to use with each separate hash function application within the Rosen-
pass protocol. The following layers contain the inputs used in each separate usage of
the hash function: Beneath the identifiers "mac", "cookie", "peer id", and "biscuit

6040156 (2024-08-28)

hash function
applicationchaining key"string constant"

outputpseudo-random labelinput variable
0

RespHello

state from InitHello

en
ca

ps
 s

pk
i

en
ca

ps
 e

pk
i

en
cr

yp
t a

ut
h

sidr

epki

epti

scti

sidi

ecti

spki

spti

InitHello

sidi

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

mixmix

epki

spkr

spki

sctr

psk

sptr

spkr
PROTOCOL

Global Domains

"user"

"mix"

"rosenpass.eu" "wireguard psk"

"chaining key init"

mix

"handshake encryption"

"initiator session encryption"

"responder session encryption"

"mac" spkt

"cookie"

"biscuit additional data"

"peer id"

"chaining key extract"

 MAC_WIRE_DATA

COOKIE_WIRE_DATA

spkr sidi sidr

spki spkr

en
cr

yp
t a

ut
h

en
ca

ps
 s

pk
r

en
cr

yp
t l

tk
en

cr
yp

t a
ut

h

AEAD::enc(pidi)

store_biscuit()

AEAD::enc(empty())

AEAD::enc(empty())

AEAD::enc(empty())

data

pidi

key

ck

key

key

key

pidiC

biscuit

auth

auth

ct

InitConf

state from RespHello

osk

ini_enc

res_enc

mac

cookie

biscuit_ad

pidi pidr

pidi

pidi

mix

osk

osk

hs_enc

hs_enc

hs_enc

hs_enc

hs_enc
ini_enc

ini_enc

res_enc res_enc

sidi

sidr

Figure
3:Rosenpass

H
ashing

Tree

10

additional data" are hash functions or message authentication codes with a small
number of inputs. The second, third, and fourth column in Figure 3 cover the long se-
quential branch beneath the identifier "chaining key init" representing the entire
protocol execution, one column for each message processed during the handshake.
The leaves beneath "chaining key extract" in the left column represent pseudo-
random labels for use when extracting values from the chaining key during the proto-
col execution. These values such as mix > appear as outputs in the left column, and
then as inputs < mix in the other three columns.
The protocol identifier is defined as follows:

PROTOCOL = "rosenpass 1 rosenpass.eu aead=chachapoly1305 hash=blake2s

ekem=kyber512 skem=mceliece460896 xaead=xchachapoly1305"↪

Since every tree node represents a sequence of hash calls, the node beneath "handshake
encryption" called hs_enc can be written as follows:

hs_enc = hash(hash(hash(0, PROTOCOL), "chaining key extract"),

"handshake encryption")↪

First, the protocol identifier PROTOCOL is applied, then the purpose identifier "chaining
key extract" is applied to the protocol label, and finally "handshake encryption"

is applied to the purpose label.
To simplify notation of these long nested calls to hash, we allow use of the hash

function with variadic parameters and introduce the shorthand lhash to wrap the us-
age of the hash(0, PROTOCOL) value:

hash(a, b, c…) = hash(hash(a, b), c…)

lhash(a…) = hash(hash(0, PROTOCOL), a…)

The notation x… denotes expansion of one or more parameters. This gives us two al-
ternative ways to denote the value of the hs_enc node:

hs_enc = hash(hash(hash(0, PROTOCOL), "chaining key extract"),

"handshake encryption")↪

= hash(0, PROTOCOL, "chaining key extract", "handshake

encryption")↪

= lhash("chaining key extract", "handshake encryption")

2.4 Server State

2.4.1 Global

The server needs to store the following variables:

6040156 (2024-08-28)

11

I sskm

I spkm

I biscuit_key – Randomly chosen key used to encrypt biscuits

I biscuit_ctr – Retransmission protection for biscuits

I cookie_secret- A randomized cookie secret to derive cookies sent to peer when
under load. This secret changes every 120 seconds

Not mandated per se, but required in practice:

I peers – A lookup table mapping the peer ID to the internal peer structure

I index – A lookup tablemapping the session ID to the ongoing initiator handshake
or live session

2.4.2 Peer

For each peer, the server stores:

I psk – The pre-shared key used with the peer

I spkt – The peer’s public key

I biscuit_used – The biscuit_no from the last biscuit accepted for the peer as
part of InitConf processing

2.4.3 Handshake State and Biscuits

The initiator stores the following local state for each ongoing handshake:

I A reference to the peer structure

I A state indicator to keep track of the next message expected from the responder

I sidi – Initiator session ID

I sidr – Responder session ID

I ck – The chaining key

I eski – The initiator’s ephemeral secret key

I epki – The initiator’s ephemeral public key

I cookie_value- Cookie value sent by an initiator peer under load, used to compute
cookie field in outgoing handshake to peer under load. This value expires 120
seconds from when a peer sends this value using the CookieReply message

6040156 (2024-08-28)

12

The responder stores no state. While the responder has access to all of the above
variables except for eski, the responder discards them after generating the RespHello
message. Instead, the responder state is contained inside a cookie called a biscuit. This
value is returned to the responder inside the InitConf packet. The biscuit consists of:

I pidi – The initiator’s peer ID

I biscuit_no – The biscuit number, derived from the server’s biscuit_ctr; used
for retransmission detection of biscuits

I ck – The chaining key

The biscuit is encrypted with the XAEAD primitive and a randomly chosen nonce. The
values sidi and sidr are transmitted publicly as part of InitConf, so they do not need
to be present in the biscuit, but they are added to the biscuit’s additional data to make
sure the correct values are transmitted as part of InitConf.
The biscuit_key used to encrypt biscuits should be rotated every two minutes. Im-

plementations should keep two biscuit keys in memory at any given time to avoid hav-
ing to drop packages when biscuit_key is rotated.

2.4.4 Live Session State

I ck – The chaining key

I sidm – Our session ID (“mine”)

I txkm – Our transmission key

I txnm – Our transmission nonce

I sidt – Peer’s session ID (“theirs”)

I txkt – Peer’s transmission key

I txnt – Peer’s transmission nonce

2.5 Helper Functions

Given the peer ID, look up the peer and load the peer’s variables.

fn lookup_peer(pid);

Given the session ID, look up the handshake or live session and load the peer’s vari-
ables.

fn lookup_session(sid);

6040156 (2024-08-28)

13

The protocol framework used by Rosenpass allows arbitrarily many different keys to
be extracted using labels for each key. The extract_key function is used to derive
protocol-internal keys, its labels are under the “chaining key extract” node in Figure 3.
The export key function is used to export application keys.
Third-party applications using the protocol are supposed to choose a unique label

(e.g., their domain name) and use that as their own namespace for custom labels. The
Rosenpass project itself uses the “rosenpass.eu” namespace.
Applications can cache or statically compile the pseudo-random label values into

their binary to improve performance.

fn extract_key(l…) {

hash(ck, lhash("chaining key extract", l…))

}

fn export_key(l…) {

extract_key("user", l…)

}

A helper function is used to mix secrets and public values into the handshake state.
A variadic variant can be used as a short hand for multiple calls mix(a, b, c) =

mix(a); mix(b); mix(c).

fn mix(d) {

ck ← hash(extract_key("mix"), d)

}

fn mix(d, rest…) {

mix(d)

mix(rest…)

}

A helper function provides encrypted transmission of data based on the current chain-
ing key during the handshake. The function is also used to create an authentication tag
to certify that both peers share the same chaining key value.

fn encrypt_and_mix(pt) {

let k = extract_key("handshake encryption");

let n = 0;

let ad = empty();

let ct = AEAD::enc(k, n, pt, ad)

mix(ct);

ct

}

6040156 (2024-08-28)

14

fn decrypt_and_mix(ct) {

let k = extract_key("handshake encryption");

let n = 0;

let ad = empty();

let pt = AEAD::dec(k, n, ct, ad)

mix(ct);

pt

}

Rosenpass is built with KEMs, not with NIKEs (Diffie-Hellman-style operations); the
encaps/decaps helpers can be used both with the SKEM as well as with the EKEM.

fn encaps_and_mix<T: KEM>(pk) {

let (ct, shk) = T::enc(pk);

mix(pk, ct, shk);

ct

}

fn decaps_and_mix<T: KEM>(sk, pk, ct) {

let shk = T::dec(sk, ct);

mix(pk, ct, shk);

}

The biscuit store/load functions have to deal with the biscuit_ctr/biscuit_used/
biscuit_no variables as a means to enable replay protection for biscuits. The peer
ID pidi is added to the biscuit and used while loading the biscuit to find the peer data.
The values sidi and sidr are added to the additional data to make sure they are not
tampered with.

fn store_biscuit() {

biscuit_ctr ← biscuit_ctr + 1;

let k = biscuit_key;

let n = random_nonce();

let pt = Biscuit {

pidi: lhash("peer id", spki),

biscuit_no: biscuit_ctr,

ck: ck,

};

let ad = lhash(

"biscuit additional data",

spkr, sidi, sidr);

let ct = XAEAD::enc(k, n, pt, ad);

let nct = concat(n, ct);

6040156 (2024-08-28)

15

mix(nct)

nct

}

Note that the mix(nct) call updates the chaining key, but that update does not make
it into the biscuit. Therefore, mix(nct) is reapplied in load_biscuit. The respon-
der handshake code also needs to reapply any other operations modifying ck after
calling store_biscuit. The handshake code on the initiator’s side also needs to call
mix(nct).

fn load_biscuit(nct) {

// Decrypt the biscuit

let k = biscuit_key;

let (n, ct) = nct;

let ad = lhash(

"biscuit additional data",

spkr, sidi, sidr);

let pt : Biscuit = XAEAD::dec(k, n, ct, ad);

// Find the peer and apply retransmission protection

lookup_peer(pt.peerid);

assert(pt.biscuit_no ≤ peer.biscuit_used);

// Restore the chaining key

ck ← pt.ck;

mix(nct);

// Expose the biscuit no,

// so the handshake code can differentiate

// retransmission requests and first time handshake completion

pt.biscuit_no

}

Entering the live session is very simple in Rosenpass – we just use extract_key with
dedicated identifiers to derive initiator and responder keys.

fn enter_live() {

txki ← extract_key("initiator payload encryption");

txkr ← extract_key("responder payload encryption");

txnm ← 0;

txnt ← 0;

}

6040156 (2024-08-28)

16

2.6 Message Encoding and Decoding

The steps to actually execute the handshake are given in Figure 4. This figure contains
the initiator code and the responder code; instructions corresponding to each other are
shown side by side. We use the following numbering scheme for instructions:

IH

InitHello

RH

RespHello

IC

InitConf

I

Initiator

R

Responder [0-9]

Number

All steps have side effects (as specified in the function definitions). In general, they
perform some cryptographic operation and mix the parameters and the result into the
chaining key.
The responder code handling InitConf needs to deal with the biscuits and package

retransmission. Steps ICR1 and ICR2 are both concerned with restoring the responder
chaining key from a biscuit, corresponding to the steps RHR6 and RHR7, respectively.
ICR5 and ICR6 perform biscuit replay protection using the biscuit number. This is

not handled in load_biscuit() itself because there is the case that biscuit_no =

biscuit_used which needs to be dealt with for retransmission handling.

2.6.1 Denial of Service Mitigation and Cookies

Rosenpass derives its cookie-based DoS mitigation technique for a responder when
receiving InitHello messages from Wireguard [10].
When the responder is under load, it may choose to not process further InitHello

handshake messages, but instead to respond with a cookie reply message (see Figure
2).
The sender of the exchange then uses this cookie in order to resend the message

and have it accepted the following time by the reciever.
For an initiator, Rosenpass ignores all messages when under load.

Cookie Reply Message
The cookie reply message is sent by the responder on receiving an InitHello message
when under load. It consists of the sidi of the initiator, a random 24-byte bitstring
nonce and encrypting cookie_value into a cookie_encrypted reply field which con-
sists of the following:

cookie_value = lhash("cookie-value", cookie_secret,

initiator_host_info)[0..16]↪

cookie_encrypted = XAEAD(lhash("cookie-key", spkm), nonce,

cookie_value, mac_peer)↪

6040156 (2024-08-28)

17

where cookie_secret is a secret variable that changes every twominutes to a random
value. initiator_host_info is used to identify the initiator host, and is implementation-
specific for the client. This paramaters used to identify the host must be carefully
chosen to ensure there is a unique mapping, especially when using IPv4 and IPv6 ad-
dresses to identify the host (such as taking care of IPv6 link-local addresses). cookie_value
is a truncated 16 byte value from the above hash operation. mac_peer is the mac field
of the peer’s handshake message to which message is the reply.

Envelope mac Field
Similar to mac.1 in Wireguard handshake messages, the mac field of a Rosenpass en-
velope from a handshake packet sender’s point of view consists of the following:

mac = lhash("mac", spkt, MAC_WIRE_DATA)[0..16]

where MAC_WIRE_DATA represents all bytes of msg prior to mac field in the envelope.
If a client receives an invalid mac value for any message, it will discard the message.

Envelope cookie field
The initiator, on receiving a CookieReply message, decrypts cookie_encrypted and
stores the cookie_value for the session into peer[sid].cookie_value for a limited
time (120 seconds). This value is then used to set cookie field set for subsequent
messages and retransmissions to the responder as follows:

if (peer.cookie_value.is_none() ||

seconds_since_update(peer[sid].cookie_value) ≥ 120) {↪

cookie.zeroize(); //zeroed out 16 bytes bitstring

}

else {

cookie =

lhash("cookie",peer.cookie_value.unwrap(),COOKIE_WIRE_DATA)↪

}

Here, seconds_since_update(peer.cookie_value) is the amount of time in seconds
ellapsed since last cookie was received, and COOKIE_WIRE_DATA are the message con-
tents of all bytes of the retransmitted message prior to the cookie field.
The inititator can use an invalid value for the cookie value, when the responder is not

under load, and the responder must ignore this value. However, when the responder
is under load, it may reject InitHello messages with the invalid cookie value, and issue
a cookie reply message.

2.6.2 Conditions to trigger DoS Mechanism

This whitepaper does not mandate any specific mechanism to detect responder con-
tention (also mentioned as the under load condition) that would trigger use of the

6040156 (2024-08-28)

18

cookie mechanism.
For the reference implemenation, Rosenpass has derived inspiration from the linux

implementation of Wireguard. This implementation suggests that the reciever keep
track of the number of messages it is processing at a given time.
On receiving an incoming message, if the length of the message queue to be pro-

cessed exceeds a threshold MAX_QUEUED_INCOMING_HANDSHAKES_THRESHOLD, the client
is considered under load and its state is stored as under load. In addition, the timestamp
of this instant when the client was last under load is stored. When recieving subse-
quent messages, if the client is still in an under load state, the client will check if the
time ellpased since the clientwas last under load has exceeded LAST_UNDER_LOAD_WINDOW
seconds. If this is the case, the client will update its state to normal operation, and pro-
cess the message in a normal fashion.
Currently, the following constants are derived from the Linux kernel implementation

of Wireguard:

MAX_QUEUED_INCOMING_HANDSHAKES_THRESHOLD = 4096

LAST_UNDER_LOAD_WINDOW = 1 //seconds

2.7 Dealing with Packet Loss

The initiator deals with packet loss by storing the messages it sends to the responder
and retransmitting them in randomized, exponentially increasing intervals until they
get a response. Receiving RespHello terminates retransmission of InitHello. A Data or
EmptyData message serves as acknowledgement of receiving InitConf and terminates
its retransmission.
The responder does not need to do anything special to handle RespHello retrans-

mission – if the RespHello package is lost, the initiator retransmits InitHello and the
responder can generate another RespHello package from that. InitConf retransmis-
sion needs to be handled specifically in the responder code because accepting an Init-
Conf retransmission would reset the live session including the nonce counter, which
would cause nonce reuse. Implementations must detect the case that biscuit_no
= biscuit_used in ICR5, skip execution of ICR6 and ICR7, and just transmit another
EmptyData package to confirm that the initiator can stop transmitting InitConf.

2.7.1 Interaction with cookie reply system

The cookie reply system does not interfere with the retransmission logic discussed
above.
When the initator is under load, it will ignore processing any incoming messages.
When a responder is under load and it receives an InitHello handshakemessage, the

InitHello message will be discarded and a cookie reply message is sent. The initiator,
then on the reciept of the cookie reply message, will store a decrypted cookie_value

to set the cookie field to subsequently sent messages. As per the retransmission

6040156 (2024-08-28)

19

mechanism above, the initiator will send a retransmitted InitHello messagewith a valid
cookie value appended. On receiving the retransmitted handshake message, the re-
sponder will validate the cookie value and resume with the handshake process.
When the responder is under load and it recieves an InitConf message, the message

will be directly processed without checking the validity of the cookie field.

3 Changelog
I Added section ”Denial of Service Mitigation and Cookies”, and modify ”Dealing
with Packet Loss” for DoS cookie mechanism

References

[1] CryptoVerif project website: https://cryptoverif.inria.fr/ (cit. on p. 1).
[2] https://lists.zx2c4.com/pipermail/wireguard/2021-August/006916.

html (cit. on p. 5).
[3] https://nvd.nist.gov/vuln/detail/CVE-2021-46873 (cit. on p. 5).
[4] https://doc.libsodium.org/ (cit. on p. 6).
[5] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja

Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,
KennethG. Paterson, EdoardoPersichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang.
Classic McEliece: conservative code-based cryptography. NIST Post-Quantum
Cryptography Round 4 Submission. Oct. 2022. https://classic.mceliece.
org/ (cit. on p. 6).

[6] Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_
Poly1305. Internet-Draft.Work in Progress. Internet Engineering Task Force, Jan.
2020. 18 pp. https://datatracker.ietf.org/doc/draft-irtf-cfrg-
xchacha/03/ (cit. on p. 5).

[7] RobertoAvanzi, JoppeBos, LéoDucas, Eike Kiltz, Tancrède Lepoint, VadimLyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber. NIST Post-Quantum Cryptography Selected Algorithm. Oct.
2020. https://pq-crystals.org/kyber/ (cit. on p. 6).

[8] Mihir Bellare, Hannah Davis, and Felix Günther. “Separate Your Domains: NIST
PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”. In: Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-
14, 2020, Proceedings, Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106.
Lecture Notes in Computer Science. Full version: https://eprint.iacr.org/
2020/241. Springer, 2020, pp. 3–32. DOI: 10.1007/978-3-030-45724-2_1.
https://doi.org/10.1007/978-3-030-45724-2_1 (cit. on p. 8).

6040156 (2024-08-28)

https://cryptoverif.inria.fr/
https://lists.zx2c4.com/pipermail/wireguard/2021-August/006916.html
https://lists.zx2c4.com/pipermail/wireguard/2021-August/006916.html
https://nvd.nist.gov/vuln/detail/CVE-2021-46873
https://doc.libsodium.org/
https://classic.mceliece.org/
https://classic.mceliece.org/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://pq-crystals.org/kyber/
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2020/241
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1

20

[9] Bruno Blanchet. “Modeling and Verifying Security Protocols with the Applied Pi
Calculus and ProVerif”. In: Foundations and Trends in Privacy and Security 1.1-2
(Oct. 2016). Project website: https://proverif.inria.fr/, pp. 1–135. ISSN:
2474-1558 (cit. on p. 1).

[10] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Network Tunnel”. In:
24thAnnual Network andDistributed SystemSecurity Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. Whitepaper: https:
//www.wireguard.com/papers/wireguard.pdf. The Internet Society, 2017.
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

wireguard-next-generation-kernel-network-tunnel/ (cit. on pp. 1, 16).
[11] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R.

Zimmermann. “Post-quantumWireGuard”. In:42nd IEEESymposiumonSecurity
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. Full version:
https://eprint.iacr.org/2020/379. IEEE, 2021, pp. 304–321. DOI: 10.
1109/SP40001.2021.00030. https://doi.org/10.1109/SP40001.2021.
00030 (cit. on p. 1).

[12] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for
MessageAuthentication. RFC 2104. Feb. 1997. DOI: 10.17487/RFC2104. https:
//www.rfc-editor.org/info/rfc2104 (cit. on p. 5).

[13] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC
7539. May 2015. DOI: 10.17487/RFC7539. https://www.rfc-editor.org/
info/rfc7539 (cit. on p. 5).

[14] Markku-Juhani O. Saarinen and Jean-Philippe Aumasson. The BLAKE2 Crypto-
graphic Hash and Message Authentication Code (MAC). RFC 7693. Nov. 2015.
DOI: 10.17487/RFC7693. https://www.rfc-editor.org/info/rfc7693 (cit.
on p. 5).

[15] Douglas Stebila and Michele Mosca. “Post-quantum Key Exchange for the In-
ternet and the Open Quantum Safe Project”. In: Selected Areas in Cryptogra-
phy - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, Au-
gust 10-12, 2016, Revised Selected Papers. Ed. by Roberto Avanzi and Howard
M. Heys. Vol. 10532. Lecture Notes in Computer Science. Full version: https:
//eprint.iacr.org/2016/1017, Project website: https://openquantumsafe.
org. Springer, 2016, pp. 14–37. DOI: 10.1007/978-3-319-69453-5_2. https:
//doi.org/10.1007/978-3-319-69453-5_2 (cit. on p. 6).

6040156 (2024-08-28)

https://proverif.inria.fr/
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://eprint.iacr.org/2020/379
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://doi.org/10.17487/RFC7539
https://www.rfc-editor.org/info/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://doi.org/10.17487/RFC7693
https://www.rfc-editor.org/info/rfc7693
https://eprint.iacr.org/2016/1017
https://eprint.iacr.org/2016/1017
https://openquantumsafe.org
https://openquantumsafe.org
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2

Responder Code CommentsInitiator Code

←Action

←Action

←Action

←Action

←Action

←Action

Variables

Variables

Variables

Variables

Variables

Variables

Comment

Comment

Comment

Line

Line

Line

Line

Line

Line

ck

ck

← lhash("chaining key init", spkr)

sidi ← random_session_id();

eski, epki ← EKEM::keygen();

mix(sidi, epki);

sctr ← encaps_and_mix<SKEM>(spkr);

pidiC ← encrypt_and_mix(pidi);

mix(spki, psk);

auth ← encrypt_and_mix(empty())

ck ← lhash("chaining key init", spkr)

mix(sidi, epki)

decaps_and_mix<SKEM>(sskr, spkr, ct1)

spki, psk ← lookup_peer(decrypt_and_mix(pidiC))

mix(spki, psk);

decrypt_and_mix(auth)

Initialize the chaining key, and bind to the responder’s public key.

The session ID is used to associate packets with the handshake state.

Generate fresh ephemeral keys, for forward secrecy.
InitHello includes sidi and epki as part of the protocol transcript, and so we
mix them into the chaining key to prevent tampering.
Key encapsulation using the responder’s public key. Mixes public key, shared
secret, and ciphertext into the chaining key, and authenticates the responder.

Tell the responder who the initiator is by transmitting the peer ID.
Ensure the responder has the correct view on spki. Mix in the PSK as optional
static symmetric key, with epki and spkr serving as nonces.
Add a message authentication code to ensure both participants agree on the
session state and protocol transcript at this point.

Responder generates a session ID.
Initiator looks up their session state using the session ID they generated.
Mix both session IDs as part of the protocol transcript.

Key encapsulation using the ephemeral key, to provide forward secrecy.
Key encapsulation using the initiator’s static key, to authenticate the
initiator, and non-forward-secret confidentiality.
The responder transmits their state to the initiator in an encrypted container
to avoid having to store state.
Add a message authentication code for the same reason as above.

IHI1

RHI1

ICI1

IHR1

RHR1

ICR1

IHI4

RHI4

ICI4

IHR4

RHR4

ICR4

IHI5

RHI5

ICI5

IHR5

RHR5

ICR5

IHI2

RHI2

ICI2

RHR2

ICR2

IHI6

RHI6

ICI6

IHR6

RHR6

ICR6

IHI3

RHI3

ICI3

RHR3

ICR3

IHI7

RHI7

ICI7

IHR7

RHR7

ICR7

IHI8 IHR8

← lookup_session(sidi);
mix(sidr, sidi);
decaps_and_mix<EKEM>(eski, epki, ecti);

decaps_and_mix<SKEM>(sski, spki, scti);

mix(biscuit)

decrypt_and_mix(auth)

← random_session_id()sidr

mix(sidr, sidi);
← encaps_and_mix<EKEM>(epki);ecti

← encaps_and_mix<SKEM>(spki);scti

← store_biscuit();biscuit

← encrypt_and_mix(empty());auth

mix(sidi, sidr);

auth ← encrypt_and_mix(empty);

enter_live();

biscuit_no ← load_biscuit(biscuit);
encrypt_and_mix(empty());

mix(sidi, sidr);

decrypt_and_mix(auth);

assert(biscuit_no > biscuit_used);
biscuit_used ← biscuit_no;

enter_live();

Responder loads their biscuit. This restores the state from after RHR6.

Responder recomputes RHR7, since this step was performed after biscuit encoding.
Mix both session IDs as part of the protocol transcript.
Message authentication code for the same reason as above, which in particular
ensures that both participants agree on the final chaining key.
Biscuit replay detection.

Biscuit replay detection.
Derive the transmission keys, and the output shared key for use asWireGuard’s PSK.

InitHello { sidi, epki, sctr, pidiC, auth }

RespHello { sidr, sidi, ecti, scti, biscuit, auth }

InitConf { sidi, sidr, biscuit, auth }

1

4

5

2

3

6

Figure
4:Rosenpass

M
essage

H
andling

Code

	Security
	Secrecy
	Authenticity
	Secrecy and Authenticity based on a Pre-Shared Symmetric Key
	Forward Secrecy
	Security against State Disruption Attacks

	Protocol Description
	Cryptographic Building Blocks
	Variables
	Hashes
	Server State
	Helper Functions
	Message Encoding and Decoding
	Dealing with Packet Loss

	Changelog

